THE JOURNAL OF ANTIBIOTICS

STUDIES ON ACTINOMYCETALES PRODUCING ANTIBIOTICS ONLY ON AGAR CULTURE

II. ISOLATION, STRUCTURE AND BIOLOGICAL PROPERTIES OF N-CARBAMOYL-D-GLUCOSAMINE (SUBSTANCE SF-1993)

SHOJI OMOTO, TAKASHI SHOMURA, HIROKO SUZUKI and SHIGEHARU INOUYE

Research Laboratories, Meiji Seika Kaisha, Ltd. Morooka-cho, Kohoku-ku, Yokohama 222, Japan

(Received for publication January 11, 1979)

N-Carbamoyl-D-glucosamine was isolated from the culture of *Streptomyces halstedii* SF-1993. It showed weak antimicrobial activity against some Gram-negative bacteria and some fungi.

As described in the preceding paper¹⁾, *Streptomyces halstedii* SF-1993 was isolated by screening, in which strains producing antibiotics on agar culture but not in shaken culture were selected. Taxonomy and morphology-productivity relationships of the strain SF-1993 were the subjects of the previous paper. This paper deals with the isolation, characterization and structure of the antibiotic produced by the strain SF-1993.

Production and Isolation

The antibotic SF-1993 could be produced either by agar culture or by submerged culture.

(1) From Agar Culture.

The strain SF-1993 was inoculated on GB agar medium¹⁾ containing 2.0% glycerol, 1.0% Polypeptone, 0.5% meat extract, 0.3% CaCO₈ and 2.0% agar in two large Petri-dishes (26.5 cm i.d.) containing 200 ml of the medium and incubated at 28°C for 2 days. In order to separate the culture fluid from agar, the whole cultured agar including mycelia was frozen once at -20° C, then thawed and filtered immediately.

The culture filtrate (280 ml) obtained from the agar culture was treated with charcoal (1.0%, w/v) to decolorize it, followed by filtration and concentration (5 ml). The concentrate was passed through a column of charcoal (6 ml), and developed with water to give substance SF-1993 as a crude powder. The crude powder was purified by a column chromatography over Sephadex LH-20 (300 ml) developed with methanol. From the methanol eluate were obtained fine needles of SF-1993, which were recrystallized from water-ethanol. Yield, 25 mg.

(2) From Submerged Culture.

The submerged fermentation of SF-1993 has been achieved by the use of the diluted medium¹⁾. The strain SF-1993 was inoculated on medium containing 1.0% glycerol, 0.5% Polypeptone, 0.15% meat extract and 0.15% CaCO₃ in thirty 500-ml Erlenmeyer flasks (each flask contained 100 ml of the medium), and incubated at 28°C for 22 hours on a rotary-shaker. After shaking, 2.5 liters of the filtered broth was obtained. The filtered broth was treated with charcoal (1.0%, w/v), followed by filtration and concentration (50 ml). The concentrate was passed through a column of charcoal

437

(150 ml) and developed with water to give a crude antibiotic powder. The crude antibiotic was purified by a column chromatography over Sephadex LH-20 (300 ml) developed with methanol. Upon standing, the active fractions deposited fine needles of substance SF-1993 which were identical in all respects with substance SF-1993 obtained from agar culture. Yield, 480 mg.

Physico-chemical Properties of Substance SF-1993

SF-1993 (1) is a neutral, water-soluble substance. It is positive to EHRLICH (yellow), naphthoresorcinol-phosphoric acid (pale violet) and RYDON-SMITH reactions, but negative to ninhydrin and 2,3,5triphenyltetrazolium reactions. SF-1993 melted at $158 \sim 159^{\circ}$ C and showed mutarotation: $[\alpha]_{D}^{30} + 73.6^{\circ}$ (10 min.) $\rightarrow +58.1^{\circ}$ (overnight) (c 0.98, water). Upon standing at room temperature in water for a couple of days, 1 gradually changes to a biologically inactive compound (2). The presence of acid or heating (40°C) greatly accelerate the inactivation.

The UV spectrum of SF-1993 in water showed end absorption, and the IR spectrum in a KBr pellet showed characteristic bands at 3450, 3300, 1640, 1560, 1370, 1130, 1060 and 1010 cm⁻¹ (Fig. 1). SF-1993 analyzed for $C_7H_{14}N_2O_6$. Found: C, 38.17; H, 6.45; N, 11.84%. Calcd.: C, 37.84; H, 5.93; N, 12.60%.

The FD mass spectrum of SF-1993 showed a base peak at m/e 205 (100%, M-17) with a very weak peak at m/e 222 (M⁺). The EI mass spectrum of its tetraacetate (α -acetate, m.p. 191~194°C, $[\alpha]_{D}^{20}$ +103° (c 1.1, CHCl₃), no β -acetate was detected) showed peaks at m/e 347 (M-43) and 330 (M-60). The PMR and the CMR spectra of SF-1993 are shown in Figs. 2 and 3. Particularly noteworthy was the similarity of the CMR spectrum to that of D-glucosamine hydrochloride²⁾, with an exception of additional peaks at 162.3 and 161.9 ppm attributable to amide carbonyls.

These physico-chemical properties of substance SF-1993 suggested that SF-1993 is an N-carbamoyl-D-hexosamine. The PMR spectra of 1 or its tetraacetate in CDCl₃ or CD₃COCD₃ (δ 2.02 (s, OAc × 1), 2.04 (s, OAc × 2), 2.19 (s, OAc × 1), 4.0~4.4 (m, 4H), 5.1~5.3 (m, 2H), 5.48 (s, NH₂),

Fig. 1. IR spectrum of SF-1993 (KBr).

5.93 (d, NH, J=9.2 Hz), 6.15 (d, 1H, J=3.4 Hz)) were of little value in obtaining information about the configuration of SF-1993 because of severe overlapping of signals. However, 2-deoxy-structure was suggested by the fact that irradiation at δ 4.2 collapsed the doublets at δ 5.93 (NH) and 6.15 (H-1). Since acetylation of SF-1993 gave exclusively an α -acetate showing a small J_{1,2} value, the configuration around C-2 could not be obtained.

On the other hand, treatment of 1 with 5% methanolic hydrogen chloride followed by acetylation gave a 7:5 mixture of α - and β -methyl glycoside tetraacetates. The mixture was purified over silica gel column chromatography followed by crystallization from ethanol to give each pure anomer: α anomer; syrup, $[\alpha]_{D}^{30}$ +83.0° (c 1.1, CHCl₃), MS, m/e 404 (M⁺), PMR (100 MHz, d₆-benzene+d₆acetone 3:1) δ 1.78, 1.79, 1.80 and 1.83 (s, OAc × 4), 3.09 (s, OMe), 3.86 (dq, an X part of an ABMX

Fig. 2. WEFT-PMR spectrum of SF-1993 at 100 MHz in D_2O (an equilibrium solution) *; the signal of 2 formed during accumulation.

Fig. 3. CMR spectrum of SF-1993 at 25.16 MHz in D₂O.

system; H-5, $J_{5,6} = 4.9$ Hz, $J_{5,6'} = 2.7$ Hz, $J_{5,4} = 9.5$ Hz), 4.09 & 4.26 (an AB part of an ABX system: H-6 & 6', $J_{6,6'} = 12.0$ Hz), 4.47 (td, H-2, $J_{2,3} = 10.0$ Hz, $J_{1,2} = 3.1$ Hz, $J_{2, NH} = 8.8$ Hz), 4.69 (d, H-1), 5.26 (t, H-4, $J_{4,8} = 9.5$ Hz), 5.56 (t, H-3), 9.00 (d, NH), 9.48 (s, NH): β -anomer; fine needles, m.p. 202~ 204°C, $[\alpha]_D^{20} + 19.6^\circ$ (*c* 0.7, CHCl₃), MS, *m/e* 404 (M⁺), PMR (d₆-

benzene + d₆-acetone 1:2) δ 1.89,

1.91, 1.93 and 1.98 (s, OAc×4), 3.40 (s, OMe), 3.76 (dq, an X part of an ABMX system; H-5, $J_{5,6} = 4.1 \text{ Hz}$, $J_{5,6'} = 2.9 \text{ Hz}$, $J_{5,4} = 9.2 \text{ Hz}$), 4.03 (bq, H-2, $J_{2,1} = 8.2 \text{ Hz}$, $J_{2,3} = 10.0 \text{ Hz}$, $J_{2,\text{NH}} = 9.0 \text{ Hz}$), 4.15 & 4.32 (an AB part of an ABX system: H-6,6', $J_{6,6'} = 12.0 \text{ Hz}$), 4.70 (d, H-1), 5.12 (t, H-4, $J_{4,3} = 9.2 \text{ Hz}$), 5.47 (dd, H-3), 8.80 (d, NH), 9.28 (s, NH).

These PMR data, especially the coupling constants of each adjacent protons of the β -anomer, suggested the *gluco*-configuration for SF-1993. The structure of SF-1993 was finally confirmed to be N-carbamoyl-D-glucosamine by synthesis from D-glucosamine hydrochloride. An authentic sample of N-carbamoyl-D-glucosamine was obtained by the treatment of D-glucosamine hydrochloride with 1.1 equivalent of potassium cyanate in water for 20 minutes, followed by chromatography over Sephadex G-10 and concentration. Addition of ethanol to the concentrate gave fine needles of N-carbamoyl-D-glucosamine in 81% yield. The synthetic sample was identical in all respects including biological activity.

The N-carbamoyl derivatives of D-galactosamine, syrup, and D-mannosamine, syrup, were newly synthesized as reference compounds, and they were quite different from SF-1993. These isomers were much less stable than 1, especially D-galacto-isomer, and changed to inactive compounds like 2 within a day at room temperature. N-Carbamoyl-D-glucosamine has been synthesized by MICHEEL *et al.*³⁰ in 1956, but this is the first report of it as an antibiotic.

The inactive compound 2 melted at $150 \sim 153^{\circ}$ C and did not show mutarotation: $[\alpha]_{D}^{20} - 49.2^{\circ}$ (c 1, water). Lack of mutarotation, together with the elemental analysis (Calcd. for C₇H₁₂N₂O₅: C, 41.17; H, 5.92; N, 13.72%, Found: C, 40.87; H, 5.94; N, 13.13%) and EI mass spectrum of its triacetate (m.p. 173 ~ 175°C, $[\alpha]_{D}^{20} + 17.9^{\circ}$ (c 0.6, CHCl₃) showing a molecular ion at *m/e* 330 suggested the ureylene structure **2** for the inactive compound.

Biological Properties of Substance SF-1993

The antimicrobial spectrum of the antibiotic SF-1993 was tested by the paper-disc agar diffusion method and the results are listed in Table 1. The antibiotic SF-1993 is weakly active against some Gram-negative bacteria and some fungi. In contrast, N-carbamoyl-D-galactosamine and -D-mannosamine, isomers of 1, showed no activity so far tested.

The antibacterial activity of the antibiotic SF-1993 was reversed by several sugars. As shown in Table 2, the activity of SF-1993 was antagonized by hexoses, especially by D-glucose, but not by

Test organism	Inhibitory diameter (mm)		
	8 mg/ml	2 mg/ml	Medium
Escherichia coli IFO 13163	25.2	18.3	a
Escherichia coli K12	20.3	14.5	"
Escherichia coli K12R*	25.2	21.0	"
Shigella sonnei	22.1	13.8	"
Salmonella typhi	26.0	18.6	"
Proteus vulgaris	26.6	14.5	"
Klebsiella pneumoniae	0	0	"
Pseudomonas aeruginosa	0	0	"
Bacillus subtilis	0	0	"
Staphylococcus aureus	0	0	"
Sarcina lutea	0	0	"
Mycobacterium smegmatis	0	0	b
Candida albicans	(15.0)	0	с
Cryptococcus neoformans	(11.7)	0	"
Aspergillus niger	(30.0)	(17.5)	"
Mucor spinescens	(33.3)	(24.2)	"
Rhizopus niveus	(18.2)	(10.0)	"
Trichoderma koningi	(20.3)	(11.7)	"

Table 1. Antimicrobial spectrum of the antibiotic SF-1993.

Table 2. Effect of various sugars on the antibacterial activity of SF-1993.

Concentra- tion (M)	Percent of amount reversed
	0%
0.04	100
0.2	100
0.04	50
0.2	100
0.04	10
0.2	100
0.04	50
0.2	100
0.04	0
0.2	100
0.04	0
0.2	70
0.2	0
0.2	0
0.2	0
	Concentra- tion (M) 0.04 0.2 0.04 0.2 0.04 0.2 0.04 0.2 0.04 0.2 0.04 0.2 0.04 0.2 0.2 0.2 0.2 0.2

The reversal by the sugar was examined by the agar diffusion assay method using *Escherichia coli* IFO 13168 as a test organism. Equal volume of the antibiotic solution (0.04 M) and the sugar solution (0.08 or 0.4 M) were mixed and assayed.

Method: paper-disc agar diffusion method. Medium: a; bouillon agar, b; glycerol bouillon agar,

c; malt extract-yeast extract agar.

*resistant strain against kanamycin, tetracycline and chloramphenicol.

(): hazy zone.

pentoses. It was also antagonized by D-glucosamine and N-acetyl-D-glucosamine. Acute toxicity of SF-1993 was examined using mice. No

mice died on administering the antibiotic at a dose of 1,000 mg/kg intravenously.

Discussion

As nitrogen-containing monosaccharide antibiotics, 3-amino-3-deoxy-D-glucose⁴⁾, nojirimycin⁵⁾ and streptozotocin⁶⁾ are known. Substance SF-1993 is a new type of amino-sugar antibiotic containing an N-carbamoyl group. In this connection, it is interesting that LL-BM-123 β^{τ_0} and its analogues contain N-carbamoylamino-sugar derivatives, and show strong activity against both Grampositive and negative bacteria. SF-1993 substance is a new glucose analogue having antibacterial activity, but it showed no inhibition against glucosidase, differing from nojirimycin⁸⁾.

References

- SHOMURA, T.; J. YOSHIDA, S. AMANO, M. KOJIMA, S. INOUYE & T. NIIDA: Studies on Actinomycetales producing antibiotics only on agar culture. I. Screening, taxonomy and morphology-productivity relationship of Streptomyces halstedii, strain SF-1993. J. Antibiotics 32: 427~435, 1979
- JOHNSON, L. F. & W. C. JANKOWSKI: Carbon-13 Nuclear Magnetic Resonance Spectroscopy. A Collection of Assigned, Coded and Indexed Spectra. p. 205, Wiley-Interscience, New York, 1972
- MICHEEL, F. & W. LENGSFELD: On the reactions of D-glucosamine: Compounds of D-glucosamine with amino acids. Chem. Ber. 89: 1246~1253, 1956

- UMEZAWA, S.; K. UMINO, S. SHIBAHARA, M. HAMADA & S. OMOTO: Fermentation of 3-amino-3-deoxy-D-glucose. J. Antibiotics, Ser. A 20: 355~360, 1967
- INOUYE, S.; T. TSURUOKA & T. NIIDA: The structure of nojirimycin, a piperidinose sugar antibiotic. J. Antibiotics, Ser. A 19: 288~292, 1966
- HERR, R. R.; H. K. JAHNKE & A. D. ARGOUDELIS: The structure of streptozotocin. J. Am. Chem. Soc. 89: 4808~4809, 1967
- ELLESTAD, G. A.; D. B. COSULICH, R. W. BROSCHARD, J. H. MARTIN, M. P. KUNSTMANN, G. O. MORTON, J. E. LANCASTER, W. FULMOR & F. M. LOVELL: Glycocinnamoylspermidines, a new class of antibiotics. 3. The structures of LL-BM123β, γ₁, and γ₂. J. Am. Chem. Soc. 100: 2515~2524, 1978
- NIWA, T.; S. INOUYE, T. TSURUOKA, Y. KOAZE & T. NIIDA: Nojirimycin as a potent inhibitor of glucosidase. Agr. Biol. Chem. 34: 966~968, 1970